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a b s t r a c t

A general framework for assessing future impacts of technology on society and environment is pre-
sented. The dynamics between human activity and technological systems impact upon many processes
in society and nature. This involves non-linear dynamics requiring an understanding of how technology
and human behaviour influence each other and co-evolve. Conventionally, technological and behavioural
systems are analyzed as separate entities. We develop an integrated theoretical and methodological
approach termed techno-behavioural dynamics focussing on networked interactions between technol-
ogy and behaviour across multiple system states. We find that positive feedback between technology
learning, evolving preferences and network effects can lead to tipping points in complex sociotechnical
systems. We also demonstrate how mean-field and agent-based models are complimentary for capturing
a hierarchy of analytical resolutions in a common problem domain. Assessing and predicting co-
evolutionary dynamics between technology and human behaviour can help avoid systems lock-in and
inform a range of adaptive responses to environmental and societal risk.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the future impacts of technology on society and
environment is of fundamental importance. For instance, low car-
bon technologies play a central role for climate mitigation (IPCC,
2011), and the rapid adoption of information and communication
technology (ICT) is altering economic and environmental systems
(Hilty et al., 2006; Basole and Rouse, 2008). Emerging technologies
will become increasingly ubiquitous and non-invasive across soci-
ety and environment (Bohn et al., 2004). Synergistic advances in
emerging technologies including energy, nano, bio, and ICTs
coupled with the rise in genetic engineering and cognitive sciences
will influence the quality of human life and societal outcomes
(Roco, 2004). Therefore, understanding how technology impacts
upon human decision-making and behaviour has implications for
responding and adapting to future risk and uncertainty. Yet the
feedbacks between technological performance and human
decision-making are not well understood. Technology and behav-
iour are typically assessed as discrete non-interacting
nity and Regional Planning,
uver, BC V6T 1Z2, Canada.
phenomenon, whether it is technological change modelled by dif-
ferential equations (Bass, 1969) or decision theoretic models based
on representative rationale decision-makers (McFadden, 1974). But
there is inherent uncertainty and feedback between social, tech-
nological and physical processes not well captured by conventional
approaches. Part of the challenge in modelling complex dynamical
systems involves a hierarchy problem where model output reso-
lution, and therefore understanding of a system across multiple
states diverges between mean-field and agent-based approaches.
Responding to those challenges, advancements have been made in
systems modelling using optimization (Brede and de Vries, 2013)
and multi-agent methods for assessing complex human-
eenvironmental interactions (van Oel et al., 2010; de Almeida et al.,
2010; Smajgl et al., 2011; Filatova et al., 2013). Disaggregated ap-
proaches have also been used to model behaviour and networks
showing the importance of assessing multiple scales of interaction
(Caillault et al., 2013; Gerst et al., 2013; Schreinemachers and
Berger, 2011). But there is further need for new analytical frame-
works that focus on coupled dynamic interactions between tech-
nology and behaviour, better able to capture real world
phenomenon (Barab�asi, 2005, 2009; Vespignani, 2009).

From a theoretical perspective there is scope to integrate tech-
niques from decision theory, networks and dynamical systems to
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further our understanding of a broad range of complex socio-
technical systems, characterised by heterogeneous technology and
behavioural interactions across multiple system states. Here we
develop a general theoretical and methodological approach termed
techno-behavioural dynamics focussing on the networked in-
teractions between technological systems and agent behaviour. We
provide a case study of emergent technology to assess feedback
between state dynamics, and argue for the advantages of applying
both mean-field and agent-based methods within a flexible
modular framework, enabling complimentary analytical resolu-
tions. The paper proceeds with 1) methods and materials, 2) model
outputs and discussion, and 3) conclusions.
2. Methods and materials

2.1. Techno-behavioural dynamic approach

Environmental and sustainability analyses are often informed
by computational modelling and framed in scenarios to assess
impacts and alternative strategies. Alternative strategies typically
depend on technological interventions to mitigate future impacts.
More recently there has been recognition of the importance of
behaviour, lifestyle and other demand-side factors for mitigation
and adaptation. This has led to a divergence in supply and demand
side approaches in sustainability analyses. We propose an inte-
grated theoretical andmethodological approach to address some of
those challenges. Scenarios are often used as a complimentary
measure to mathematical modelling and simulation to ensure in-
ternal logic and consistency for model parameterization. The
overarching goal of scenario analysis is to account for inherent
unpredictability in various future trends. Scenarios are not pre-
dictions but exploratory visioning exercises to consider future
pathways that break from current trends (Schwartz, 1998). Fig. 1
shows scenario archetypes typically used in sustainability model-
ling including: 1) status quo, 2) technological optimism, and 3)
behavioural change. We integrate key elements from 2 to 3 to
develop a new framework termed 4) techno-behavioural dynamics.

Status quo e reflects a baseline scenario typically used as the
starting point in a scenario building exercise and used to compare
against the assumptions and simulation results for other scenarios.
It usually relies on extrapolating historical and current macro level
trends. It is typically assumed that there is not a strong policy or
industry initiative to induce significant change on either the supply
4. Techno-behavioural 
Dynamics  
Technology and behaviour 
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Demand-side intervention 
through changing behaviour, 
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Fig. 1. Techno-behavioural dynamic framework informed by scenario archetypes. The
different levels of demand and supply indicate the conceptual focus typical for each
scenario. During scenario development this translates into assumptions on what key
interventions will influence the trajectory and composition of the system.
(technological innovation) or demand (end-use) side, hence the
continuation of current trends (IEA, 2008).

Technological optimism - characterizes scenarios that generally
focus on advanced technological solutions to societal and envi-
ronmental challenges. There is often an assumption that rapid
technological deployment will be supported by a strong emphasis
on supply-side industry investment and radical policy support (IEA,
2010). These scenarios typically do not explicitly account for het-
erogeneous agent behaviour. There is often an assumption that the
future reduction in cost of technology, extrapolated from historical
technology learning rates is the central mechanism for widespread
adoption. While technological learning rates are more appropriate
for supply-side technologies that have little interaction with hu-
man behaviour, it does not account for demand-side technologies
more dependent on behavioural factors that influence adoption
and end-use. Nevertheless, these scenarios were the first to take a
problem solving approach and show the technical potential in
mitigating environmental impacts (IEA, 2008, 2010; Skea et al.,
2011).

Behavioural change e is a response to the conventional focus on
technological solutions without social context. This approach is
characterised by a focus on demand-side behaviour such as the
reduction in energy end-use or vehicle kilometres travelled (Anable
et al., 2012; Hickman and Banister, 2007). Those reductions are
often based on the premise of dramatically changing normative
behaviour through policy or other economic interventions i.e. price
signals. There is often an assertion that end-use behaviour will have
to radically change to meet sustainability objectives, but no
mechanism is given as to how that change might arise, particularly
at the individual level. The approach is more focused on overall
lifestyles, consumption patterns, and normative practices (Anable
et al., 2012; Eyre et al., 2010). Nevertheless, these types of sce-
narios highlighted the important role of end-use behaviour,
recognizing that technology is an important, but insufficient means
to achieve sustainability. Although the importance of behavioural
change has been well argued, the approach typically lacks a
mechanism for change, and has not accessed well developed
analytical tools for decision-making and strategic behaviour found
across social and biological disciplines (Jackson and Yariv, 2010;
Nowak and May, 1992; von Neumann and Morgenstern, 1944).

Techno-behavioural dynamics e integrates key elements of
technological optimism and behavioural change, but is embedded
in dynamical systems, network and decision theory. This approach
implies a simultaneous emphasis on both supply and demand-side
factors i.e. technological performance, and end-use demand pat-
terns. Specifically it focuses on individual level decision-making
and how heterogeneous micro-level behaviour can scale up to in-
fluence systems performance. This approach views technology and
behaviour as a coupled dynamical system co-evolving over time.
With the rise of ubiquitous emerging technologies, these co-
evolutionary processes will become increasingly prevalent
throughout society (Barab�asi, 2005; Roco, 2004; Vespignani, 2009,
2012; Watts, 2007). This approach seeks to understand how indi-
vidual behaviour and technologies interact, and influence each
other over space and time. Importantly, the approach considers
how technological performance feeds back on end-use behaviour,
which in turn can positively influence continued use and techno-
logical change, leading to a co-evolutionary process. This departs
from current approaches that view technology and behaviour as
discrete non-interacting systems. Moreover, it is different from the
literature on behavioural change that does not propose underlying
mechanisms for changing individual behaviour, and also departs
from the transitions literature (Rip and Kemp, 1998; Smith et al.,
2005), which takes a far broader view of sociotechnical systems
incorporating firms and institutions, while our focus is on
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individual decision-making and technical performance.

2.2. General theoretical framework

We propose a flexible module based modelling framework to
assess techno-behavioural dynamics on networks (Fig. 2). The
framework captures multiple system states where agents and
processes interact within, and across states including: 1) the
Microstate captures stochastic individual-level behaviour, 2) the
Mesostate focuses on assemblages of decision-makers, technolo-
gies and network structures, and 3) theMacrostate includes macro-
level phenomenon that can emerge from, or constrain lower state
behaviour. The dashed boundaries of the system states depict
feedback which could be thermal, material or information flows
over varying spatial and temporal scales, where non-linear
dynamical interactions between system states can result in emer-
gent phenomenon (Prigogine, 1997). From an analytical and
computational perspective, the different states frame the analysis
and help specify appropriate implementation models e.g. deter-
ministic vs. stochastic. The modelling framework is composed of a
series of interconnected computational modules that share input/
outputs shown by two way directed arrows. Each module encodes
state behaviour at time t0 and computes state change at t > t0. The
following summarises the theoretical background that informs the
general modelling framework specification, and implementation
models (Section 2.3).

2.2.1. Systems behaviour
Macro-level phenomenon can be modelled by dynamical sys-

tems theory, which includes a phase space M whose elements x
represent possible states of the system, and an evolution rule ft

determines the state at time t. The state at time t0 often allows
determination of the state at any subsequent time t > t0. Analysis of
the system is based on continuous dx=dt ¼ _X ¼ f ðxÞ, or discrete
xtþ1 ¼ f (xt) time variables, which determines how the state x2M of
the system evolves. We use discrete dynamical systems to gener-
alise our modelling framework. The Systems Module S captures
Fig. 2. Techno-behavioural dynamic general modelling framework. Solid boxes represent c
two way flows of input/output values, common variables, functions or algorithms; Dashed
Mesostate e assemblages of technologies, decision-makers and networks, Macrostate e ma
Framework Definitions and specified under Implementation models (Section 2.3).
emergent behaviour at the macrostate that can arise from substate
interactions. The behaviour of the system can include changes in
physical and information stocks, or other phenomenon to be
specified.

2.2.2. Technology behaviour
Change in technological systems have long been modelled by

variants of the logistic function, which has non-deterministic
chaotic properties in its difference form Xtþ1 ¼ rXt(1 � Xt) where
Xt is a number between zero and one representing the ratio of an
existing population to the maximum possible population in year t,
and r is a positive number representing the combined rate for
growth and decay of a population. When 1 < r < 4 non-trivial
dynamical behaviour occurs, which has been used to approximate
many real world processes because it captures the negative feed-
back found in natural systems (May, 1976). The logistic function
informs our Technology Module T capturing the behaviour of
technological assemblages, which can be composed of same class
variants (e.g. petrol, electric vehicles) or different technology clas-
ses (e.g. photovoltaics, smart meters).

2.2.3. Network behaviour
Network structure and dynamics are formalised as a mathe-

matical graph G ¼ {P, E}where P is a set of N nodes (P1, P2 … PN) and
E is a set of edges that connect two elements of P. In theoretical
random networks all pairs of N nodes are connected with proba-
bility p resulting in ~ pN(N - 1)/2 edges distributed randomly, with
most nodes assigned the same number of edges following a Poisson
distribution (Erd�os and R�enyi, 1961). However, in real world net-
works non-random structure and dynamics occur. Structural
change is captured by ‘small world effects’measured by a clustering
coefficient Ci¼2Ei/ki (ki � 1) where node i having ki edges con-
necting to ki nodes results in ki(ki e 1)/2 edges between the original
node i and its nearest neighbours forming a clique of personal
contacts; Ei is the actual number of edges between the neighbors of
i. Empirical networks typically have larger clustering coefficients
than random networks (Watts and Strogatz, 1998). A second
omputational modules composed of state and process variables; Solid arrows indicate
background boxes depict state levels: Microstate e stochastic individual behaviour,
cro-level phenomenon and emergent behaviour. All model variables are explained in
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fundamental property is network connectivity measured by a de-
gree distribution function P(k), which is the probability that a
randomly selected node i has k edges. Empirical work has shown
that the number of edges k connected to a node often follows a
power law distribution of the form P(k) ~ keg providing a mecha-
nism for network evolution (Barab�asi and Albert, 1999). Those
properties inform our Network Module G.

2.2.4. Decision behaviour
Decision theoretic models can capture human interaction with

technology and the built environment. For example, choice models
can link individual preferences with technology performance, and
evaluate decision-making based on observed and unobserved pa-
rameters. An important class of decision theoretic models are
discrete choice models based on random utility theory (RUM),
which can take the general form
PijðqÞ ¼

Rþ∞
�∞ LijðbÞZðb j qÞ dðbÞ; LijðbÞ ¼ expðb0xijÞ=

P
jexpðb0xijÞ

where Pij is the probability that agent i chooses alternative j. The
vector xij are observed variables for agent i and alternative j, b are
parameters randomly drawn from a density function Ƶ($) and theta
q is a vector of underlying moment parameters characterizing Ƶ($).
The probability Pij(q) is numerically integrated using Monte Carlo
simulations, which allow for general patterns of heterogeneity
across individuals in their sensitivity to exogenous variables
(McFadden, 1974; Train, 2009). This model flexibility is well suited
for simulating interactions between technology and decision
making capturing general patterns of demand. The Decision Mod-
ule D computes a human activity to be specified. Here we assume
human activity is generally characterised by a series of discrete
choices made over time.

2.2.5. Agent behaviour
The behaviour of individual agents can be computed using agent

based models (ABM). While mean-field models have been widely
successful at predicting average systems behaviour, ABMs are
designed to capture stochastic heterogeneity in agents (Fibich and
Gibori, 2010). ABMs evolved from cellular automaton (CA) defined
over a two-dimensional grid Z2 where each grid point (i, j) is a site
or node. Each site has a state xi,j(t) often a binary at time step t. The
neighbourhood NB is the collection of sites that influence the future
state t þ n of a given site. Based on the current states xi,j(t) and N a
function Ji,j computes the next state xi,j(t þ 1) of the site (i, j)
following xi;jðt þ 1Þ ¼ Ji;jðxi;jðtÞÞ where xi;jðtÞ denotes the tuple
consisting of all states xi0 ;j0 ðtÞ with (i',j') 2 N. The flexibility of CA's
and related ABMs can relax many of the assumptions implicit in
mean-field models. A general ABM approach empirically tested
demonstrating predictive behaviour is Prob(t) ¼ 1 � (1 � p) *
(1 � q) ^ k(t)where Prob(t) is a binomial choice to be specified such
as willingness to adopt at time t and k(t) are previous adopters in a
social network, while p and q are internal and external influences
respectively (Bass, 1969; Goldenberg et al., 2001; Garber et al.,
2004; Goldenberg et al., 2009). Those properties inform our
Agent Module A.

2.2.6. Framework definitions
Systems behaviour is encoded by a general function St ¼ w(F, l,

N, U, St�1), where the state of system St at time t evolves as a
function w(·) of macro-level growth processes F e.g. natural re-
sources, GDP, population, etc.; decay l captures deterioration e.g.
average life span of a physical stock, or other negative growth
processes to be specified; N is a normalisation algorithm that en-
codes information feedback between system states to impose
limiting constraints across state behaviour e.g. cumulative adoption
(microstate) does not exceed total market demand (macrostate); U
is the evolution rule, and St�1 is previous state behaviour. We
therefore generalise systems behaviour St as a function of growth,
decay and information feedback to substate behaviour.

Technology behaviour is encoded by Tt ¼ g(U, d, X, U,Tt�1)
where the state of technology Tt at time t evolves as a function
g(·) of growth U, such as industry investment or policy in-
centives for innovation and adoption; decay d captures tech-
nology specific negative growth processes such as operational
life or targeted decommissioning policies; X is a vector of
physical attributes that characterise the performance of a tech-
nology e.g. cost, efficiency, information, etc.; U is the evolution
rule, and Tt�1 is previous state behaviour. We therefore gener-
alise technology behaviour Tt as a function of growth, decay and
technical performance.

Network behaviour is encoded by Gt ¼ y(P, E, Q, K, U, Gt�1)where
the state of network Gt at time t evolves as a function y(∙) of
network size P, connectivity E, and what we specify as global Q and
local K information feedback signals that influences how the clus-
tering coefficient Ci and degree distribution P(k) changes over time
t. For example, Q can specify how agent behaviour is indirectly
influenced through exposure to a larger population (global signal),
and K specifies direct influence through exposure to personal
contacts (local signal); U is the evolution rule, and Gt�1 is previous
state behaviour. We therefore generalise network behaviour Gt as a
function of structure, connectivity, and information feedback that
influences network evolution.

Decision behaviour is encoded by Dt ¼ h(T, b, G, U, Dt�1) where
the state of decision-makingDt at time t evolves as a function h($) of
technology behaviour T e.g. changing performance of incumbent
technology, emergent new technology, etc.; personal preferences b
for a given technology, which captures various socioeconomic or
lifestyle factors; network behaviour G can specify physical, virtual
or social networks that influence decision behaviour e.g. supply
chains, peer group influence, information transmission, etc.; U is
the evolution rule, and Dt�1 is previous state behaviour. We
therefore generalise decision behaviour Dt as a function of indi-
vidual preferences, technology performance and network influ-
ence. In this module, decision behaviour is characterised by a
mean-field representation of more than one agent, and in-
teractions with technological assemblages, as opposed to agent
behaviour which captures stochastic microstate processes
described next.

Agent behaviour is encoded as At ¼ z(D, G, J, U, At�1) where
the state of agent behaviour At at time t evolves as a function z(∙)
of decision behaviour D, network influence G, and an algorithm
J that captures stochastic processes to be specified e.g. asym-
metrical information, non-utility maximizing behaviour, boun-
ded rationality, etc.; U is the evolution rule, and At�1 is previous
state behaviour. We therefore generalise agent behaviour At as a
function of decision-making, network influence, and inherent
randomness.

2.3. Implementation models, data and calibration

The modelling framework is demonstrated by assessing
emerging alternative technology, which involve technological and
behavioural interactions across multiple system states. The UK
transport system is used to calibrate the model, where systems
behaviour St is total passenger vehicle stock; technology behaviour
Tt disaggregates total stock into vehicle technology classes; decision
Dt and agent At behaviour compute adoption probabilities at
different states, where the former is mean-field average behaviour
at longer time scales, and the latter is stochastic individual
behaviour at shorter time scales; and network behaviour Gt is
specified as social influence on adoption. In the implementation
model, systems behaviour is specified as
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St ¼ St�1� Ft þ St�1 � lt (1)

where St is change in total technology stock in year t, the growth
rate Ft of the total stock represents aggregate market demand
calibrated to macroeconomic forecasts of demand growth in the
UK. The decay parameter lt is stock scrappage calibrated to vehicle
licencing statististics where a low fraction (~5%) of new vehicles
(<3yrs) compared to a high fraction (~70%) of older vehicles
(>13yrs) are scrapped (DfT, 2012). The total stock St is then dis-
aggregated into vehicle technologies Tjt of class j that compete for
market share at time t implemented as

Tjt ¼
�bTjt�1� Ujt þ bTjt�1 � djt

�
� Djt (2)

where Ujt is the growth rate of technology j at time t representing
investment, and calibrated to the proportion of technology j to the
total stock St between 2000 and 2010; djt is the scrappage rate of
technology j; bT is the normalized technology stock specified in
equation (5); and Djt is the probability that technology j is adopted
at time t. Djt is implemented as

Djt ¼
1
R
�
XR
r¼1

LjtðbrÞ; Ljt ¼
eb

0
X
0
jPJ

j¼1e
b
0
X0
j

(3)

where Ljt is the conditional probability to adopt, X
0
j are the

observed performance parameters of technology j which can
change over time denoted by (') capturing technology learning ef-
fects, and b’s are random coefficients that capture individual pref-
erences for technology j which also change over time ('). R is a
random draw of b’s from a density function Ƶ(bjq) where
(bn) ~ Z(bnjq) as the number of draws R increases variance s de-
creases resulting in ~ model convergence. To simulate heteroge-
neous behaviour different density functions Ƶ($) can be used, but
the normal and lognormal distributions are the most general (Bhat,
2001) and also ensure the model is not over parameterised. A
lognormal distribution is usedwhere a b coefficient is the same sign
(þ/�) for every agent. This allows specification of expected global
behaviour, such as negative preferences for high technology costs.
To implement feedback constraints between the System S, Tech-
nology T and Decision D modules and ensure the growth of indi-
vidual technologies j does not exceed growth of total vehicle stock
St specified by aggregate demand Ft we implement a normalisation
algorithm N where,

Nt ¼ St

,X
j¼1

Tjt (4)

bTjt ¼ Tjt�Nt (5)

resulting in St¼
P

Tjt. The total technology stock St therefore places
an upper bound on the growth of individual technologies at each
time step t. This simulates multiple sigmoidal growth curves with
different inflection points, some of which can be negative trajec-
tories due to interaction with decision behaviour Djt where some
technologies j are phased out over time t due to low probabilities of
adoption due to competing personal preferences b for different
technology performance attributes X. The above implementation
models St, Tt, Dt evaluate long-term (50 yrs) mean-field behaviour
at the macro and mesostate. Table 1 summarises technology per-
formance parameters X used as model input values for St, Tt, Dt and
the Agent Based Model At discussed below.

Here we assess stochastic agent behaviour, the Agent Module A
assesses shorter term (20 yrs) stochastic individual behaviour
specified as the probability to adopt Ajt technology j at time t
implemented by,

Ajt ¼ 1� �
1� Pjt

�
*
�
1� Qjt

�
∧Kjt ; AtðJÞ (6)

where Pjt are personal preferences for technology j which is
computed by Djt where Pjt y Djt when a low number of random
draws R are computed to calculate the conditional probability Ljt
therefore not converging the model, which otherwise simulates
average mean-field behaviour of a population. Recall that a low
number of random draws R increases variance s thereby intro-
ducing higher stochasticity, which is interpreted as reflecting more
individual randomised behaviour. Network effects enter the model
as Qjt which is indirect influence to adopt technology j at time t
which is a function of previous adopters nk out of a population n
that an agent is exposed to defined as global exposure EQ¼ Qjt ¼ nk/
n; Direct network influence is specified as Kjt which is a function of
previous adopters wk within a personal network of contacts w
where local exposure is EK¼ Kjt¼wk/w. The decision algorithmJ is
implemented at each time step t specifying that in initial condition
t(0) no individual has adopted; in time step t þ 1 a probability
function A(t) is applied to each agent and stochasticity is introduced
to capture random behaviour where a random number Ǭ is drawn
from a uniform distribution [0, 1]. If A(t) >Ǭ than adoption occurs
and agent i is assigned a value (1). By summing values over period
t þ n cumulative adoption is determined (Goldenberg and Shapira,
2009). We therefore build on the original binomial form of Equa-
tion (6), which has been tested empirically showing predictive
ability (Garber et al., 2004; Goldenberg et al., 2009, 2010).

For this implementation, ABM simulations take preference P
values from the Decision Module D as input values P ¼ 0.20, 0.16,
0.10, 0.25 combined with random network influence from a syn-
thetic population arbitrarily set at Q ¼ 0.3, K ¼ 0.1. For sensitivity
analysis, the network is then rewired to simulate different combi-
nations of information feedback including personal preferences
P ¼ 0.1, 0.9 and global Q ¼ 0.1, 0.9 and local K ¼ 0.1, 0.9 network
influence. Thus stochastic agent behaviour At is based on multiple
information signals where personal preferences Pijt are weighed
against global EQ and local EK network influence. Also, while macro
and mesostate variables are direct inputs into the microstate agent
module A there is no explicit feedback from the microstate back to
the other state modules. Here the objective is to use the agent
module to provide higher resolution analysis for which the results
can be used to compare and compliment other model outputs.
However, other situations may call for an explicit feedback from the
agent based module back to the other state modules for example,
where a stochastic agent i determines decision-making behaviour,
which could be computed with the agent module A providing input
for the decision module D where Dijt y Aijt.

3. Results and discussion

We first implement the Decision Module D to calculate adoption
probabilities Dijt using 4 simulations shown in Fig. 3 that depict A) a
reference case mass market with preferences for low cost, B) early
adopter with preferences for environmental performance, C)
balanced with combined mass and early adopter preferences, and
D) external effects with preferences for increasing support infra-
structure e.g. electric vehicle charging. The mass market simulation
gives expected results where the incumbent technology Tp is
dominant. The balanced and external effects simulations give
mixed signals with no clear winner. But the early adopter simula-
tion gives a clear signal showing the highest adoption of Th over
time. The simulations indicate that at discrete time steps there is a



Table 1
Normalised technology T performance parameters X as example model input values.

Technologies XPurchase Price XRunning Cost XFuel Efficiency XAcceleration XRange XEmissions XRefuelling Availability

TPetrol 1 1 1 1 1 1 1
TDiesel 1.21 0.88 0.85 1.34 1.26 0.95 1
THEV 1.57 0.59 0.58 1.54 1.52 0.86 1
TPHEV 2.42 0.33 0.56 1.85 1.35 0.67 0.50
TBEV 1.97 0.32 0.29 1.69 0.21 0.47 0.01
TFC 6.00 0.14 0.48 1.85 0.68 0.45 0.01

Notes: Vector X can specify any number of performance parameters for any technology T. Here new technologies compete against incumbent technology TPetrol therefore
performance values X are normalised and indexed against TPetrol for model inputs. The full set of technologies include: petrol, diesel, hybrid-electric (HEV), plug-in hybrid
electric (PHEV), pure battery electric (BEV), and hydrogen fuel cell (FC). See Tran (2012) for full data description and sources.

Fig. 3. Mean-field adoption probabilities (Dijt) based on agent preferences b for technologies T over time: A) Mass market, preferences for purchase price and reliability, B) Early
adopter, preferences for fuel economy and CO2 emissions, C) Balanced between mass and early adopter preferences, D) External, preferences for support infrastructure; Tp ¼ petrol,
Td ¼ diesel, Th ¼ hybrid, Tph ¼ plugin hybrid, Tfb ¼ full battery electric, Tfc ¼ fuel cell.
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high level of variation but over time a general trend in decision
making emerges. The simulations also allows us to focus in on a
particular state behaviour (high adoption of Th) and assess addi-
tional factors, such as change in technology performance X or ef-
fects on longer-term system behaviour St. In doing so, the Decision
Module D probability outputs are used as input values for the
Technology Module T, which then feeds into the Systems Module S.

The Technology implementationmodel Tjt is calibrated to the UK
passenger vehicle stock (1999e2010) and used to forecast a refer-
ence scenario where change in the performance X of incumbent
and new technologies are equal. We then show the changes in
System Behaviour i.e. total technology stock, when accounting for
changing adoption probabilities from increasing technology per-
formance X over time. Fig. 4 A and B shows the reference adoption
probabilities and technology growth forecast. Fig. 4C shows how
adoption behaviour Djt responds to changes in technology
behaviour Tjt when performance attributes X (fuel efficiency, fuel
cost, carbon emissions) for alternative technologies improve at
twice the rate as the incumbent system. Fig. 4D shows how these
co-evolutionary dynamics between technology and decision
behaviour can lead to a tipping point in systems behaviour Stwhere
around 2040 the incumbent technology system is displaced by
emergent technology. The simulations show how individual pref-
erences for how a technology improves over time at the unit level
can accelerate deployment and influence systems level behaviour,
where incremental changes in techno-behavioural dynamics can
build up overcoming systems inertia resulting in new technology
overtaking the incumbent system. This suggests that an underlying
mechanism to trigger tipping points in sociotechnical systems is
the positive feedback effect between evolving individual prefer-
ences and technology learning.

Although integrating the decision and technology models has



Fig. 4. System behaviour impacts from interaction between technology and decision dynamics: A) Early adopter probabilities (Dijt) and resulting B) Technology growth (Tjt) i.e.
calibrated to UK passenger vehicle stock (St) from 1999 to 2010, R2 ¼ 0.9702 at 95% confidence bounds and forecasted to 2050; C) Adoption probabilities when technology per-
formance X (fuel efficiency) of alternative technologies (Th, Tph, Tfb, Tfc) exceed incumbent (Tp, Td) by factor 2, resulting in decreasing fuel costs, and CO2 emissions, and the resulting
D) Technology growth.
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given some insight into systems behaviour, some resolution has
been lost. For example, when the decision model Dijt was para-
meterised to account for increasing technology performance X'

Fig. 4C shows the resulting high adoption probabilities forTh.
Consequently, all other adoption probabilities are suppressed, but
interestingly one alternative Tfb was impacted the least, as opposed
to previously more dominant preferences for technologies Tp and
Td. But this signal is not picked up in the mean-field technology
growth outputs in Fig. 4D because the resolution is too coarse to
assess what happens to Tfb since the total stock of the incumbent
system is orders of magnitude greater. But the signal, however
slight, may contain interesting insights, for example why certain
behaviour is more or less resistant to change from internal or
external effects. Themodelling framework nowhas the flexibility to
deploy an agent based approach to evaluate the problem domain at
higher resolutions capturing micro-behaviour at shorter time
scales.

Feedback between meso and microstate modules PjtyDjt allows
adoption probabilities Djt for Tfb to be specified as individual pref-
erences P and used as input values for the Agent model Ajt. Fig. 5Ae

D show stochastic adoption probabilities based on individual
preferences P and global Q and local K network influence held
constant to first assess the impacts from variable preferences P.
When accounting for these combined micro-level factors a high
degree of variability is shown in the short-term, which is more
realistic than stylized logistic curves. This is shown by comparing
simulation results against empirical data shown in Fig. 5EeH. In
general, accounting for high variation could inform a range of
adaptive responses rather than depending on single response
mechanisms. However, this variability is not picked up in themean-
field technology growth model Tjt. Moreover, the simulation results
can be used to establish a baseline by determining the best match
to empirical data, which appears to be 5B with parameters P¼ 0.16,
Q ¼ 0.30, K ¼ 0.10 since 5F is data for electric vehicles (Tfb). Fig. 6
shows further simulations to assess network clustering where the
greatest influences on behaviour are individual preferences P and
combined network effects Q þ K revealing a potential mechanism
to understand and influence decision-making.

4. Conclusions

Complex systems have critical thresholds also called tipping
points, where a system abruptly shifts from one state to another. In
ecological and financial systems, tipping points generally indicate
increasing vulnerability, abrupt change, and loss of resilience
(Scheffer et al., 2009; Scheffer, 2010). However, in the context of
sustainability, tipping points can also be beneficial where climate
policy for example seeks to displace the incumbent fossil based
energy system with new clean and efficient technologies (Westley
et al., 2011). Our modelling results suggest that an underlying
mechanism that can trigger a tipping point in a sociotechnical
system is the positive feedback effects between evolving individual
preferences, technology learning, and network influence. These
combined feedback effects can result in systems level change
where an incumbent technology is overtaken by a new innovation.
Those feedbacks would not be detected without an integrated
approach across multiple system states.

This paper also addresses a common hierarchy problem in
computational systems modelling where there is often divergence
between mean-field and agent-based approaches. This divergence
can dictate the types of questions asked depending on the imple-
mentation model chosen. We demonstrate the advantages of



Fig. 5. Total number of technologies at each time step computed by stochastic adoption probabilities (Ajt) based on individual preferences P and global Q and local K network effects
held constant. Panels AeD are simulations showing high variability in adoption trends reflecting E � H empirical data over 20 years: E) Liquid Natural Gas, F) Full battery electric, G)
Compressed Natural Gas, H) Ethanol 85 (EIA, 2013).

Fig. 6. Sensitivity analysis on model parameters P, Q, K showing highest total adoption
based on

P
Ajt for individual preferences S2 and combined network influence S5. Solid

bar is total average, error bar is range. S1-5 have different parameter settings with 10
model runs each over time step t ¼ 1000. Parameter settings: S1 reference case
(P ¼ 0.1, Q ¼ 0.1, K ¼ 0.1), S2 high individual preferences (P ¼ 0.9, Q ¼ 0.1, K ¼ 0.1), S3
high indirect network influence (P ¼ 0.1, Q ¼ 0.9, K ¼ 0.1), S4 high direct network
influence (P ¼ 0.1, Q ¼ 0.1, K ¼ 0.9), S5 high combined network influence (P ¼ 0.1,
Q ¼ 0.9, K ¼ 0.9).
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applying a flexible module based modelling framework that
enables different spatial and temporal resolutions across multiple
system states. This allows computational flexibility, which can help
to address a common problem domain from different analytical
perspectives depending on what question is being asked. This
approach is also effective because insights from one set of model
results may lead to other questions that require another set of
modular tools. This is demonstrated by assessing the emergence of
alternative technology across multiple system states, and showing
how analytical and computational flexibility can provide insight at
different but complimentary scales.

We need to improve our understanding of how behavioural
patterns can co-evolve with technological change. Our techno-
behavioural dynamic framework provides tools for assessing a
wide class of emerging ubiquitous technologies (nano, bio, ICT) that
will directly interact and respond to human behaviour, and have to
compete against incumbent technological systems and normative
risk. We argue for the need to move away from the arbitrary sep-
aration between supply and demand-side factors and view tech-
nology and behaviour as a coupled dynamical system. This is
important for understanding how new technology influences hu-
man activity, and more generally for assessing the risks and ben-
efits of emerging technologies on society and environment.
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